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Abstract— Any program whether it is using structural programming approach or object oriented programming approach must be executed 
instruction by instruction on the processor and all processors since 1985 are using pipelining to improve the performance by overlapped 
execution of instructions. The technique of exploiting the instructions by any possible overlapping is known as instruction level parallelism 
(ILP). There exist two different approaches to implement ILP. First approach is based on hardware and second is software-based 
approach. In the hardware-based approach, the ILP is exploited in run time, as the instructions are discovered and overlapped dynamically. 
On the other hand, to exploit ILP using software, static approach is taken to achieve parallelism at compile time. In this paper, we have 
discussed various approaches to exploit the ILP. 

Index Terms— Instruction level parallelism, ILP, Processor pipelining, Pipeline hazards, RISC hazards, True data dependencies, Loop 
unrolling. 

——————————      —————————— 

1 INTRODUCTION                                                                     
SUALLY there are five different stages in a classical 
pipelined RISC processor namely Instruction fetch 
(IF), Instruction Decode (ID), Execution (EX), Memory 

(MEM) and Write back (WB). Each of these stages has its own 
functionalities [1]. 

IF is the first stage in the processor's pipeline organization. 
The Program Counter (PC) in the IF stage holds the address of 
the next instruction to be executed. This address value is con-
tinuously incremented at each clock pulse, so that it always 
points to the next instruction to be executed.  

Next in the sequence is ID stage. Together with fetching 
and storing values to General Purpose Register set (GPR), 
branch detection and stall detection are the major functions 
performed by this stage. The branch detector circuit compares 
the values at the register addresses received with the branch 
instruction and decides whether the branch condition is true 
or not, alternatively, whether the branch will be taken or not. 
The stall detection circuit considers all the stall causing condi-
tions and then decides whether the empty cycle or stall will be 
induced between the instructions or not. 

The EX stage is responsible for performing the arithmetic 
and logical operations by means of Arithmetic and Logic Unit 
(ALU) in this stage. The load and store memory operations are 
bypassed to next stage and are not handled by ALU. 

The next is MEM stage. This stage has the memory chip 
and handles the load and store operations. To address any 
particular location in the memory, there are many possible 
addressing modes. Such as, direct addressing mode, imme-
diate addressing mode, displacement addressing mode and 
indexed addressing mode. Load operation is responsible for 
loading any value from any particular location in the memory 

to any specific register and Store operation stores the value of 
any register to any specific location in the memory.  

WB is the last stage in the sequence. This stage is responsi-
ble for writing the final result forwarded from ALU and MEM 
stage to the GPR set.  

2 UNDERSTANDING INSTRUCTION LEVEL PARALLELISM 
At every clock cycle, each stage forwards its instruction to the 
next consecutive stage in the sequence. Actually, each stage 
works as a sub unit and processes the instruction; alternative-
ly, each stage is like a part of a channel or a pipe through 
which sequence of instructions is flowing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is the reason why such processors are called pipelined 

processors and this technique of exploiting parallelism by 
overlapped execution of multiple instructions is called Pipelin-
ing (See Fig. 1). 

The main reason behind exploiting ILP is to minimize the 
cycles per instruction (CPI). The actual value of CPI for a pipe-
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Fig.1. Pipeline organization Simulation.  
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lined processor is summation of ideal pipeline CPI and stalls 
induced by other hazards. By minimizing the stalls induced by 
the hazards, we can minimize the value of the actual pipeline 
CPI or, alternatively, increase the performance [1]. As shown 
in equation (1) and (2),  

Average instruction time unpipelinedSpeedup Pipelined
Average instruction time pipelined

=  

CPI unpipelined X Clock Cycle time unpipelined
CPI pipelined X Clock Cycle time pipelined

=  

            (1) 
Aso, 

Ideal Pipeline CPI Data Hazard Stalls
CPI pipelined

Control Hazard Stalls Structural Stalls
+ 

=  + + 
 

                                                                                                      (2) 
Actually, the ideal pipelined CPI can be assumed to be one. 

As it is always almost one for a pipelined architecture [1]. 
Hence, it can be expressed as shown in equation (3).   

CPI pipelined 1 pipeline Stall Cycles induced per instruction= +
                                                                                                            (3) 

If all the stages of a pipelined processor are perfectly ba-
lanced. Then there will be ignorable cycle time overhead due to 
pipelining, alternatively, the clock cycle time for both the pro-
cessors will be almost equal in such case [1]. 

Hence, the overall speedup for a pipelined processor can be 
expressed as shown in equation (4).   

Speedup Pipelined
CPI unpipelined

1 pipeline Stall Cycles induced per instruction

=

+
 

                                                                                                      (4) 
Also, on careful observation it can be seen that the CPI for a 

unpipelined processor is same as the CPI for executing a pro-
gram with single instruction on a pipelined processor, alterna-
tively,  CPI for a unpipelined processor is equal to the number 
of pipelined stages also known as depth of the pipeline. 

Hence, we can also express the overall speedup for a pipe-
lined processor as shown in equation (5). 

Speedup Pipelined
Depth of the pipeline

1 pipeline Stall Cycles induced per instruction

=

+
 

                                                                                               (5) 
One of the easiest ways to understand ILP is through loop 

iterations. Here the parallelism is exploited to increase the ILP 
within iterations of loop. This is usually known as loop level 
parallelism. The concept of loop level parallelism can be rea-
lized by understanding the processing of code mentioned be-
low. Here, the iterations of loop will induce two arrays of 500 
elements, running in parallel.    

for ( j = 0; j < 500; j = j+1 ) 

x[ j ] = x[ j ] + y[ j ] 

Within each iteration, there is very little or almost no op-
portunity of overlapping. Hence, a proper technique is re-
quired to convert the loop level parallelism to ILP. Exploiting 
data level parallelism is a good solution for the mentioned 
situation. In data level parallelism, parallelism is imposed on 
vector operations by parallel use of data items. Four vector 
operations may be generated for the code mentioned above. 
As two will be required to load the data items j and i. One will 
be required to add them and one last operation will be re-
quired to write back the calculated result. However, when 
these vector operations are processed in parallel in a pipelined 
RISC processor, there may be some type of data dependences 
between them that can lead to unexpected results. This mal-
functioning is known as Hazard [1]. There are three types of 
hazards possible in a pipelined architecture. Namely structur-
al hazard, data hazard and control hazard. 

The structural hazards are caused due to some design flaw 
in the datapath. The control hazards are caused because of the 
control dependence. The data hazards can further be classified 
in to three types namely Read after Write hazards (RAW), 
Write after Read hazards (WAR) and Write after Write ha-
zards (WAW). The RAW hazards are caused because of the 
true data dependency. In a five stage pipelined RISC processor 
there are eight different cases of true data dependency 
[1],[2],[3].  

2.1 TYPE I: Branch after Load 
Load  RS1, # Offset 
BRNEQ  RS3, RS1, Label 

 
Here, hazard is caused because of RS1 register and can be 

resolved by inducing two stall cycles between the instructions. 

2.2 TYPE II: ALU instruction after Load 
Load  RS1, # Offset 
SUB  RS4, RS1, RS3 
 

Here, hazard is caused because of RS1 register and can be 
resolved by inducing single stall cycle between the instruc-
tions. 

2.3 TYPE III: Branch after ALU instruction 
 
SUB  RS1, RS2, RS3 
BRNEQ  RS4, RS1, Label 
 

Here, hazard is caused because of RS1 register and can be 
resolved by inducing single stall cycle between the instruc-
tions. 

2.4 TYPE IV: Store after Load  
LOAD RS1, # Offset 
STORE RS1, # Offset 
 

Here, hazard is caused because of RS1 register and can be 
resolved directly by data forwarding between the pipeline 
stages. 
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2.5 TYPE V: ALU after ALU instruction 
SUB RS1, RS2, RS3 
ADD RS4, RS1, RS5 
 

Here, hazard is caused because of RS1 register and can be 
resolved directly by data forwarding between the pipeline 
stages. 

2.6 TYPE VI: ALU as third instruction after another ALU 
Instruction 

SUB RS1, RS2, RS3 
ADD RS4, RS5, RS6 
ADD RS7, RS8, RS1 
 

Here, hazard is caused because of RS1 register and can be 
resolved directly by data forwarding between the pipeline 
stages. 

2.7 TYPE VII: Branch as fourth instruction after ALU 
instruction 

SUB RS1, RS2, RS3 
ADD RS4, RS5, RS6 
SUB RS7, RS8, RS9 
BRNEQ  RS4, RS1, Label 
 

Here, hazard is caused because of RS1 register and can be 
resolved directly by data forwarding between the pipeline 
stages. 

2.8 TYPE VIII: Store after ALU instruction 
SUB RS1, RS2, RS3 
STORE RS4, RS1, #Offset 
 

Here, hazard is caused because of RS1 register and can be re-
solved directly by data forwarding between the pipeline stages. 

The WAR hazards are caused because of the antidependence 
type name dependency. Here, the WAR hazard is caused between 
two instructions due to RS3 register. 

ADD RS1, RS2, RS3 
SUB RS3, RS4, RS5 

The WAW hazards are caused because of the output depen-
dence type name dependency. Here, the WAW hazard is caused 
between two instructions due to RS1 register. 

ADD RS1, RS2, RS3 
SUB RS1, RS4, RS5 

As, all the results are written to the GPR only in the WB stage. 
Therefore, the presence of WB stage eliminates all the possibili-
ties of WAR and WAW hazards.  

The instruction level parallelism (ILP) can be exploited over 
the instructions by marking out the non-dependent instruc-
tions that can be overlapped in the pipeline. There must be 
some pipeline latency in terms of clock cycles and possibly 
some pipeline stalls between the dependent and source in-
structions. Usually, such stalls are induced between the in-
structions because of control dependencies 
[4],[5],[6],[7],[8],[9],[10] and can be resolved using various stat-

ic and dynamic branch prediction schemes 
[11],[12],[13],[14],[15],[16],[17],[18]. Further, compiler can ex-
ploit these stall cycles to reschedule the sequence of instruc-
tion without affecting the final output to increase the quantity 
of ILP. The compiler can increase the quantity of instruction 
level parallelism by rescheduling the instructions in an un-
rolled loop [1]. For a five stage pipelined RISC processor, the 
stall latencies induced between the instructions in different 
cases are mentioned below. (See Table 1). 

Consider a block of code given below, which adds a vector 
value to a scalar value. 

 
for ( i=0; i<3; i++) 
A[i] = A[i] + S; 
 

The block of code mentioned above can be translated in to 
the set of assembly level instructions given below. Here, R1 
initially is the base address of the array and S1 contains the 
scalar value S. In addition, R2 refers to the pre-calculated ad-
dress of the last element of the array. 

 
LOOP:   Load S0, 0(R1) 

ADD S2, S0, S1 
Save S2, 0(R1) 
ADDImm R1, R1, #4 
BNE R1, R2, LOOP 

 
On scheduling the above assembly level code for the pipe-

line, the below code segment with stalls will be obtained. 
 
 
LOOP:   Load S0, 0(R1) 

STALL 
ADD S2, S0, S1 
Save S2, 0(R1) 
ADDImm R1, R1, #4 
STALL 
BNE R1, R2, LOOP 

 
The above block of code requires 7 clock cycles for its ex-

ecution, which can be rescheduled, by utilizing the empty stall 
cycles, to finish in just 5 clock cycles. 

 
LOOP:   Load S0, 0(R1) 

ADDImm R1, R1, #4 
ADD S2, S0, S1 
Save S2, -4(R1) 
BNE R1, R2, LOOP 

 

TABLE 1 
STALL LATENCIES IN A FIVE STAGE PIPELINED RISC PROCESSOR 
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Code block mentioned above is for single iteration. Howev-
er, compiler will run the loop until last iteration. Hence, the 
evaluation of intermediate ADDImm and branch conditions 
repeatedly with each iteration is an overhead. To achieve bet-
ter performance compiler will unroll the complete loop and 
replace all the intermediate ADDImm and branch instructions 
with the modified ADDImm and branch instruction at the end 
of the code.  

 
LOOP:   Load S0, 0(R1) 

STALL 
ADD S2, S0, S1 
Save S2, 0(R1) 
Load S3, 4(R1) 
STALL 
ADD S4, S3, S1 
Save S4, 4(R1) 
Load S5, 8(R1) 
STALL 
ADD S6, S5, S1 
Save S6, 8(R1) 
ADDImm R1, R1, #12 
STALL 
BNE R1, R2, LOOP 

 
This process of expanding the loop body by replicating the 

iteration of the loop multiple times and then adjusting the 
code is known as loop unrolling. This technique improves the 
performance by modifying and eliminating the unnecessary 
branch overhead. Also, to avoid any possible data depen-
dence, it is required that different registers must be used in 
each replicated loop. This use of unique registers will also in-
crease the count of registers used during loop unrolling. The 
unrolled loop mentioned above still has stall cycles. So the 
final version of the above unrolled loop, scheduled for the 
pipeline and without any stall cycle is given below. 

 
LOOP:   Load S0, 0(R1) 

Load S3, 4(R1) 
Load S5, 8(R1) 
ADD S2, S0, S1 
ADD S4, S3, S1 
ADD S6, S5, S1 
Save S2, 0(R1) 
Save S4, 4(R1) 
ADDImm R1, R1, #12 
Save S6, -4(R1) 
BNE R1, R2, LOOP 

 
Loop unrolling is an efficient technique for utilizing the 

stall cycles induced because of control hazards. However, with 
the limited number of general-purpose registers in RISC style 
architecture, sometimes it becomes difficult to apply this tech-
nique over the loop with heavy register usage. As this tech-
nique is completely based on register renaming. Consider any 
such loop with upper bound of 'n' iterations. Now to handle 
such loop we have to partition the 'n' iterations into groups of 
'K' iterations. The first group iterates for 'n mod K' times and 
following it are the remaining groups, which will iterate for 
'n/K' times. In this way, we do not have to unroll the complete 

'n' iterations at the same time and hence reduce the load of 
register renaming. 

3 RESULTS FROM SIMULATED RUN 

3.1 Running the code with data hazards and control 
hazards 

To understand the Instruction Level Parallelism (ILP) in the 
practical aspects, we have implemented the below code on a 
simulated five stage pipelined RISC processor (See Table 2). 

The figure shows the result obtained after executing the 
code on a simulated pipelined processor (See Fig. 2). Here, 
WIR15 to WIR12, shows the operation (Opcode), where WIR15 
is the most significant bit and RD7 to RD0, shows the results 
obtained for each operation, where RD7 is the most significant 
bit [19]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Fig. 2 there are two stalls induced between the third load 

TABLE 2 
THE TEST CODE I 

 

 
 Fig.2. Result for test code I.  
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instruction and the fourth branch-equal instruction to resolve 
the data hazard. In addition, there is one stall induced be-
tween the Add instruction and the second branch-not equal 
instruction for the same reason. 

3.2 Running the code after loop unrolling 
To understand the Loop Unrolling in the practical aspects 

we have implemented the below code on a simulated five 
stage pipelined RISC processor. 
 
for ( i=0; i<2; i++) 
X = X + C; 
 

The block of code mentioned above can be translated in to 
the set of assembly level instructions given below. Here, I is 
representing 'i' and J holds the upper limit to which 'i' can be 
increment. 
 
LOOP: Load X, R1 
Load C, R2 
Load I, R3 
Load J, R4 
LOOP:   ADD X, X, C 
ADDImm I, I, #1 
BNE I, J, LOOP 
 

On scheduling the above assembly level code for the pipe-
line, the below code segment with stalls will be obtained. 

LOOP: Load X, R1 
Load C, R2 
Load I, R3 
Load J, R4 
LOOP:   ADD X, X, C 
ADDImm I, I, #1 
STALL 
BNE I, J, LOOP 
 

Code block mentioned above is only one iteration. Howev-
er, compiler will run the loop until last iteration. Hence, the 
evaluation of intermediate ADDImm and branch conditions 
repeatedly with each iteration is an overhead. To achieve bet-
ter performance compiler will unroll the complete loop and 
replace all the intermediate ADDImm and branch instructions 
with the modified ADDImm and branch instruction at the end 
of the code. 
 
LOOP: Load X, R1 
Load C, R2 
Load I, R3 
Load J, R4 
LOOP:   ADD X, X, C 
ADD X, X, C 
ADDImm I, I, #2 
STALL 
BNE I, J, LOOP 
 

The unrolled loop mentioned above still has stall cycles. So 
the final version of the above-unrolled loop, scheduled for the 
pipeline and without any stall cycle is given below. 

LOOP: Load X, R1 
Load C, R2 
Load I, R3 
Load J, R4 
LOOP:   ADD X, X, C 
ADDImm I, I, #2 
ADD X, X, C 
BNE I, J, LOOP 
 

The Fig. 3 shows the result obtained after executing the 
code, shown in Table 3, on a simulated pipelined processor. 
Here, WIR15 to WIR12 shows the operation (Opcode), where 
WIR15 is the most significant bit and RD7 to RD0 shows the 
results obtained for each operation, where RD7 is the most 
significant bit [19]. 

It can be seen that, because of the loop unrolling there are 
no induced stalls between instructions, in the figure given be-
low (See Fig. 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
It can be observed that because of successful exploitation of 

ILP we are able to execute the code in Table II, with 

TABLE 3 
THE TEST CODE II 

 

 
 Fig.3. Result for test code II.  
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instructions running in parallel in five different stages of a 
pipelined RISC processor, only in 15 clock cycles. On the other 
hand, same code can take 40 clock cycles if executed 
sequentially instruction by instruction on the same processor. 

4 CONCLUSION 
In In the current study, we have discussed the theoretical as 
well as practical aspects of instruction level parallelism (ILP) 
by means of a simulated five stage pipelined RISC processor. 
By means of this study, we have shown that instruction level 
parallelism (ILP) is an efficient technique that we have suc-
cessfully implemented in our simulated five stage pipelined 
RISC processor.   
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