
International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 1413
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Analyzing the Techniques to Exploit Instruction
Level Parallelism Using a Simulated Five Stage

Pipelined RISC Processor
Amit Pandey, K. P. Yadav

Abstract— Any program whether it is using structural programming approach or object oriented programming approach must be executed
instruction by instruction on the processor and all processors since 1985 are using pipelining to improve the performance by overlapped
execution of instructions. The technique of exploiting the instructions by any possible overlapping is known as instruction level parallelism
(ILP). There exist two different approaches to implement ILP. First approach is based on hardware and second is software-based
approach. In the hardware-based approach, the ILP is exploited in run time, as the instructions are discovered and overlapped dynamically.
On the other hand, to exploit ILP using software, static approach is taken to achieve parallelism at compile time. In this paper, we have
discussed various approaches to exploit the ILP.

Index Terms— Instruction level parallelism, ILP, Processor pipelining, Pipeline hazards, RISC hazards, True data dependencies, Loop
unrolling.

—————————— ——————————

1 INTRODUCTION
SUALLY there are five different stages in a classical
pipelined RISC processor namely Instruction fetch
(IF), Instruction Decode (ID), Execution (EX), Memory

(MEM) and Write back (WB). Each of these stages has its own
functionalities [1].

IF is the first stage in the processor's pipeline organization.
The Program Counter (PC) in the IF stage holds the address of
the next instruction to be executed. This address value is con-
tinuously incremented at each clock pulse, so that it always
points to the next instruction to be executed.

Next in the sequence is ID stage. Together with fetching
and storing values to General Purpose Register set (GPR),
branch detection and stall detection are the major functions
performed by this stage. The branch detector circuit compares
the values at the register addresses received with the branch
instruction and decides whether the branch condition is true
or not, alternatively, whether the branch will be taken or not.
The stall detection circuit considers all the stall causing condi-
tions and then decides whether the empty cycle or stall will be
induced between the instructions or not.

The EX stage is responsible for performing the arithmetic
and logical operations by means of Arithmetic and Logic Unit
(ALU) in this stage. The load and store memory operations are
bypassed to next stage and are not handled by ALU.

The next is MEM stage. This stage has the memory chip
and handles the load and store operations. To address any
particular location in the memory, there are many possible
addressing modes. Such as, direct addressing mode, imme-
diate addressing mode, displacement addressing mode and
indexed addressing mode. Load operation is responsible for
loading any value from any particular location in the memory

to any specific register and Store operation stores the value of
any register to any specific location in the memory.

WB is the last stage in the sequence. This stage is responsi-
ble for writing the final result forwarded from ALU and MEM
stage to the GPR set.

2 UNDERSTANDING INSTRUCTION LEVEL PARALLELISM
At every clock cycle, each stage forwards its instruction to the
next consecutive stage in the sequence. Actually, each stage
works as a sub unit and processes the instruction; alternative-
ly, each stage is like a part of a channel or a pipe through
which sequence of instructions is flowing.

This is the reason why such processors are called pipelined

processors and this technique of exploiting parallelism by
overlapped execution of multiple instructions is called Pipelin-
ing (See Fig. 1).

The main reason behind exploiting ILP is to minimize the
cycles per instruction (CPI). The actual value of CPI for a pipe-

U

————————————————
• Amit Pandey is Ph.D scholar of Computer Science at Sunrise University

Alwar, India. E-mail: amit.pandey@live.com
• Dr. K. P. Yadav (Superviser) is associated with IIMT College of Enginer-

ing, Gr Noida, India. E-mail: drkpyadav732@gmail.com

Fig.1. Pipeline organization Simulation.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 1414
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

lined processor is summation of ideal pipeline CPI and stalls
induced by other hazards. By minimizing the stalls induced by
the hazards, we can minimize the value of the actual pipeline
CPI or, alternatively, increase the performance [1]. As shown
in equation (1) and (2),

Average instruction time unpipelinedSpeedup Pipelined
Average instruction time pipelined

=

CPI unpipelined X Clock Cycle time unpipelined
CPI pipelined X Clock Cycle time pipelined

=

 (1)
Aso,

Ideal Pipeline CPI Data Hazard Stalls
CPI pipelined

Control Hazard Stalls Structural Stalls
+

= + +

 (2)
Actually, the ideal pipelined CPI can be assumed to be one.

As it is always almost one for a pipelined architecture [1].
Hence, it can be expressed as shown in equation (3).

CPI pipelined 1 pipeline Stall Cycles induced per instruction= +
 (3)

If all the stages of a pipelined processor are perfectly ba-
lanced. Then there will be ignorable cycle time overhead due to
pipelining, alternatively, the clock cycle time for both the pro-
cessors will be almost equal in such case [1].

Hence, the overall speedup for a pipelined processor can be
expressed as shown in equation (4).

Speedup Pipelined
CPI unpipelined

1 pipeline Stall Cycles induced per instruction

=

+

 (4)
Also, on careful observation it can be seen that the CPI for a

unpipelined processor is same as the CPI for executing a pro-
gram with single instruction on a pipelined processor, alterna-
tively, CPI for a unpipelined processor is equal to the number
of pipelined stages also known as depth of the pipeline.

Hence, we can also express the overall speedup for a pipe-
lined processor as shown in equation (5).

Speedup Pipelined
Depth of the pipeline

1 pipeline Stall Cycles induced per instruction

=

+

 (5)
One of the easiest ways to understand ILP is through loop

iterations. Here the parallelism is exploited to increase the ILP
within iterations of loop. This is usually known as loop level
parallelism. The concept of loop level parallelism can be rea-
lized by understanding the processing of code mentioned be-
low. Here, the iterations of loop will induce two arrays of 500
elements, running in parallel.

for (j = 0; j < 500; j = j+1)

x[j] = x[j] + y[j]

Within each iteration, there is very little or almost no op-
portunity of overlapping. Hence, a proper technique is re-
quired to convert the loop level parallelism to ILP. Exploiting
data level parallelism is a good solution for the mentioned
situation. In data level parallelism, parallelism is imposed on
vector operations by parallel use of data items. Four vector
operations may be generated for the code mentioned above.
As two will be required to load the data items j and i. One will
be required to add them and one last operation will be re-
quired to write back the calculated result. However, when
these vector operations are processed in parallel in a pipelined
RISC processor, there may be some type of data dependences
between them that can lead to unexpected results. This mal-
functioning is known as Hazard [1]. There are three types of
hazards possible in a pipelined architecture. Namely structur-
al hazard, data hazard and control hazard.

The structural hazards are caused due to some design flaw
in the datapath. The control hazards are caused because of the
control dependence. The data hazards can further be classified
in to three types namely Read after Write hazards (RAW),
Write after Read hazards (WAR) and Write after Write ha-
zards (WAW). The RAW hazards are caused because of the
true data dependency. In a five stage pipelined RISC processor
there are eight different cases of true data dependency
[1],[2],[3].

2.1 TYPE I: Branch after Load
Load RS1, # Offset
BRNEQ RS3, RS1, Label

Here, hazard is caused because of RS1 register and can be

resolved by inducing two stall cycles between the instructions.

2.2 TYPE II: ALU instruction after Load
Load RS1, # Offset
SUB RS4, RS1, RS3

Here, hazard is caused because of RS1 register and can be
resolved by inducing single stall cycle between the instruc-
tions.

2.3 TYPE III: Branch after ALU instruction

SUB RS1, RS2, RS3
BRNEQ RS4, RS1, Label

Here, hazard is caused because of RS1 register and can be
resolved by inducing single stall cycle between the instruc-
tions.

2.4 TYPE IV: Store after Load
LOAD RS1, # Offset
STORE RS1, # Offset

Here, hazard is caused because of RS1 register and can be
resolved directly by data forwarding between the pipeline
stages.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 1415
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

2.5 TYPE V: ALU after ALU instruction
SUB RS1, RS2, RS3
ADD RS4, RS1, RS5

Here, hazard is caused because of RS1 register and can be
resolved directly by data forwarding between the pipeline
stages.

2.6 TYPE VI: ALU as third instruction after another ALU
Instruction

SUB RS1, RS2, RS3
ADD RS4, RS5, RS6
ADD RS7, RS8, RS1

Here, hazard is caused because of RS1 register and can be
resolved directly by data forwarding between the pipeline
stages.

2.7 TYPE VII: Branch as fourth instruction after ALU
instruction

SUB RS1, RS2, RS3
ADD RS4, RS5, RS6
SUB RS7, RS8, RS9
BRNEQ RS4, RS1, Label

Here, hazard is caused because of RS1 register and can be
resolved directly by data forwarding between the pipeline
stages.

2.8 TYPE VIII: Store after ALU instruction
SUB RS1, RS2, RS3
STORE RS4, RS1, #Offset

Here, hazard is caused because of RS1 register and can be re-
solved directly by data forwarding between the pipeline stages.

The WAR hazards are caused because of the antidependence
type name dependency. Here, the WAR hazard is caused between
two instructions due to RS3 register.

ADD RS1, RS2, RS3
SUB RS3, RS4, RS5

The WAW hazards are caused because of the output depen-
dence type name dependency. Here, the WAW hazard is caused
between two instructions due to RS1 register.

ADD RS1, RS2, RS3
SUB RS1, RS4, RS5

As, all the results are written to the GPR only in the WB stage.
Therefore, the presence of WB stage eliminates all the possibili-
ties of WAR and WAW hazards.

The instruction level parallelism (ILP) can be exploited over
the instructions by marking out the non-dependent instruc-
tions that can be overlapped in the pipeline. There must be
some pipeline latency in terms of clock cycles and possibly
some pipeline stalls between the dependent and source in-
structions. Usually, such stalls are induced between the in-
structions because of control dependencies
[4],[5],[6],[7],[8],[9],[10] and can be resolved using various stat-

ic and dynamic branch prediction schemes
[11],[12],[13],[14],[15],[16],[17],[18]. Further, compiler can ex-
ploit these stall cycles to reschedule the sequence of instruc-
tion without affecting the final output to increase the quantity
of ILP. The compiler can increase the quantity of instruction
level parallelism by rescheduling the instructions in an un-
rolled loop [1]. For a five stage pipelined RISC processor, the
stall latencies induced between the instructions in different
cases are mentioned below. (See Table 1).

Consider a block of code given below, which adds a vector
value to a scalar value.

for (i=0; i<3; i++)
A[i] = A[i] + S;

The block of code mentioned above can be translated in to
the set of assembly level instructions given below. Here, R1
initially is the base address of the array and S1 contains the
scalar value S. In addition, R2 refers to the pre-calculated ad-
dress of the last element of the array.

LOOP: Load S0, 0(R1)

ADD S2, S0, S1
Save S2, 0(R1)
ADDImm R1, R1, #4
BNE R1, R2, LOOP

On scheduling the above assembly level code for the pipe-

line, the below code segment with stalls will be obtained.

LOOP: Load S0, 0(R1)

STALL
ADD S2, S0, S1
Save S2, 0(R1)
ADDImm R1, R1, #4
STALL
BNE R1, R2, LOOP

The above block of code requires 7 clock cycles for its ex-

ecution, which can be rescheduled, by utilizing the empty stall
cycles, to finish in just 5 clock cycles.

LOOP: Load S0, 0(R1)

ADDImm R1, R1, #4
ADD S2, S0, S1
Save S2, -4(R1)
BNE R1, R2, LOOP

TABLE 1
STALL LATENCIES IN A FIVE STAGE PIPELINED RISC PROCESSOR

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 1416
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Code block mentioned above is for single iteration. Howev-
er, compiler will run the loop until last iteration. Hence, the
evaluation of intermediate ADDImm and branch conditions
repeatedly with each iteration is an overhead. To achieve bet-
ter performance compiler will unroll the complete loop and
replace all the intermediate ADDImm and branch instructions
with the modified ADDImm and branch instruction at the end
of the code.

LOOP: Load S0, 0(R1)

STALL
ADD S2, S0, S1
Save S2, 0(R1)
Load S3, 4(R1)
STALL
ADD S4, S3, S1
Save S4, 4(R1)
Load S5, 8(R1)
STALL
ADD S6, S5, S1
Save S6, 8(R1)
ADDImm R1, R1, #12
STALL
BNE R1, R2, LOOP

This process of expanding the loop body by replicating the

iteration of the loop multiple times and then adjusting the
code is known as loop unrolling. This technique improves the
performance by modifying and eliminating the unnecessary
branch overhead. Also, to avoid any possible data depen-
dence, it is required that different registers must be used in
each replicated loop. This use of unique registers will also in-
crease the count of registers used during loop unrolling. The
unrolled loop mentioned above still has stall cycles. So the
final version of the above unrolled loop, scheduled for the
pipeline and without any stall cycle is given below.

LOOP: Load S0, 0(R1)

Load S3, 4(R1)
Load S5, 8(R1)
ADD S2, S0, S1
ADD S4, S3, S1
ADD S6, S5, S1
Save S2, 0(R1)
Save S4, 4(R1)
ADDImm R1, R1, #12
Save S6, -4(R1)
BNE R1, R2, LOOP

Loop unrolling is an efficient technique for utilizing the

stall cycles induced because of control hazards. However, with
the limited number of general-purpose registers in RISC style
architecture, sometimes it becomes difficult to apply this tech-
nique over the loop with heavy register usage. As this tech-
nique is completely based on register renaming. Consider any
such loop with upper bound of 'n' iterations. Now to handle
such loop we have to partition the 'n' iterations into groups of
'K' iterations. The first group iterates for 'n mod K' times and
following it are the remaining groups, which will iterate for
'n/K' times. In this way, we do not have to unroll the complete

'n' iterations at the same time and hence reduce the load of
register renaming.

3 RESULTS FROM SIMULATED RUN

3.1 Running the code with data hazards and control
hazards

To understand the Instruction Level Parallelism (ILP) in the
practical aspects, we have implemented the below code on a
simulated five stage pipelined RISC processor (See Table 2).

The figure shows the result obtained after executing the
code on a simulated pipelined processor (See Fig. 2). Here,
WIR15 to WIR12, shows the operation (Opcode), where WIR15
is the most significant bit and RD7 to RD0, shows the results
obtained for each operation, where RD7 is the most significant
bit [19].

In Fig. 2 there are two stalls induced between the third load

TABLE 2
THE TEST CODE I

 Fig.2. Result for test code I.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 1417
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

instruction and the fourth branch-equal instruction to resolve
the data hazard. In addition, there is one stall induced be-
tween the Add instruction and the second branch-not equal
instruction for the same reason.

3.2 Running the code after loop unrolling
To understand the Loop Unrolling in the practical aspects

we have implemented the below code on a simulated five
stage pipelined RISC processor.

for (i=0; i<2; i++)
X = X + C;

The block of code mentioned above can be translated in to
the set of assembly level instructions given below. Here, I is
representing 'i' and J holds the upper limit to which 'i' can be
increment.

LOOP: Load X, R1
Load C, R2
Load I, R3
Load J, R4
LOOP: ADD X, X, C
ADDImm I, I, #1
BNE I, J, LOOP

On scheduling the above assembly level code for the pipe-
line, the below code segment with stalls will be obtained.

LOOP: Load X, R1
Load C, R2
Load I, R3
Load J, R4
LOOP: ADD X, X, C
ADDImm I, I, #1
STALL
BNE I, J, LOOP

Code block mentioned above is only one iteration. Howev-
er, compiler will run the loop until last iteration. Hence, the
evaluation of intermediate ADDImm and branch conditions
repeatedly with each iteration is an overhead. To achieve bet-
ter performance compiler will unroll the complete loop and
replace all the intermediate ADDImm and branch instructions
with the modified ADDImm and branch instruction at the end
of the code.

LOOP: Load X, R1
Load C, R2
Load I, R3
Load J, R4
LOOP: ADD X, X, C
ADD X, X, C
ADDImm I, I, #2
STALL
BNE I, J, LOOP

The unrolled loop mentioned above still has stall cycles. So
the final version of the above-unrolled loop, scheduled for the
pipeline and without any stall cycle is given below.

LOOP: Load X, R1
Load C, R2
Load I, R3
Load J, R4
LOOP: ADD X, X, C
ADDImm I, I, #2
ADD X, X, C
BNE I, J, LOOP

The Fig. 3 shows the result obtained after executing the
code, shown in Table 3, on a simulated pipelined processor.
Here, WIR15 to WIR12 shows the operation (Opcode), where
WIR15 is the most significant bit and RD7 to RD0 shows the
results obtained for each operation, where RD7 is the most
significant bit [19].

It can be seen that, because of the loop unrolling there are
no induced stalls between instructions, in the figure given be-
low (See Fig. 3).

It can be observed that because of successful exploitation of

ILP we are able to execute the code in Table II, with

TABLE 3
THE TEST CODE II

 Fig.3. Result for test code II.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017 1418
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

instructions running in parallel in five different stages of a
pipelined RISC processor, only in 15 clock cycles. On the other
hand, same code can take 40 clock cycles if executed
sequentially instruction by instruction on the same processor.

4 CONCLUSION
In In the current study, we have discussed the theoretical as
well as practical aspects of instruction level parallelism (ILP)
by means of a simulated five stage pipelined RISC processor.
By means of this study, we have shown that instruction level
parallelism (ILP) is an efficient technique that we have suc-
cessfully implemented in our simulated five stage pipelined
RISC processor.

REFERENCES
[1] J.L. Hennessy and D.A. Patterson, Computer architecture: a quantitative

approach, Elsevier, 2012.
[2] A. Pandey, "Stall estimation metric: An architectural metric for esti-

mating software complexity," Reliability, Infocom Technologies and Op-
timization (Trends and Future Directions)(ICRITO), 2016 5th Internation-
al Conference on, IEEE, 2016. doi: 10.1109/ICRITO.2016.7784987.

[3] A. Pandey, "Study of data hazard and control hazard resolution
techniques in a simulated five stage pipelined RISC processor," In-
ventive Computation Technologies (ICICT), International Conference on,
IEEE, Vol. 2, 2016. doi:10.1109/INVENTIVE.2016.7824864.

[4] J. Lee and A. Smith, Branch prediction strategies and branch target
buffer design, In Instruction-level parallel processors, IEEE Computer
Society Press, pp. 83-99, 1995. doi: 10.1109/MC.1984.1658927.

[5] Z. Su and M. Zhou, "A comparative analysis of branch prediction
schemes," University of California at Berkeley, Computer Architec-
ture Project, 1995.

[6] T. Ball and J.R. Larus, "Branch prediction for free," ACM, Vol.28, No.
6, pp. 300-313, 1993. doi: http://dx.doi.org/10.1145/155090.155119.

[7] J.B. Chen, M.D. Smith,C. Young and N. Gloy, "An analysis of dy-
namic branch prediction schemes on system workloads," 23rd Annual
International Symposium on Computer Architecture. IEEE, pp. 12-12,
1996.

[8] D.A. Jiménez, and C. Lin, "Dynamic branch prediction with percep-
trons," In High-Performance Computer Architecture The Seventh Interna-
tional Symposium on HPCA, IEEE, pp. 197-206, 2001. doi:
10.1109/HPCA.2001.903263.

[9] T.Y. Yeh, and Y.N. Patt, "Two-level adaptive training branch predic-
tion," In Proceedings of the 24th annual international symposium on Mi-
croarchitecture, ACM, pp. 51-61, 1991.

[10] C.C. Cheng, "The schemes and performances of dynamic branch
predictors,"
http://bwrcs.eecs.berkeley.edu/Classes/CS252/Projects/Reports/te
rry_chen.pdf. 2000.

[11] C.A. Moritz, "Computer Architecture: Dynamic Branch Prediction,"
www.ecs.umass.edu/ece/andras/courses/ECE668/Mylectures/brn
chprdct.ppt. 2017.

[12] J.E. Smith, "A study of branch prediction strategies," In Proceedings of
the 8th annual symposium on Computer Architecture, IEEE Computer
Society Press, pp. 135-148, 1981.

[13] J.A. Fisher and S.M. Freudenberger, “Predicting conditional branch
directions from previous runs of a program,”ACM, Vol. 27, No. 9,
1992.

[14] N. Gloy, C. Young, J.B. Chen and M.D. Smith, “Analysis of dynamic
branch prediction schemes on system workloads,” in Conf. Proc. -
Annu. Int. Symp. Comput. Archit. ISCA, pp. 12–21, 1996.
doi:10.1145/232974.232977.

[15] C. Young, N. Gloy and M.D. Smith, “Comparative analysis of
schemes for correlated branch prediction,” in ACM SIGARCH (Asso-

ciation Comput. Nachinery Spec. Interes. Gr. Comput. Archit. - Conf.
Proc., pp. 276–286, 1995. doi:10.1145/225830.224438.

[16] S. Mcfarling, “Combining Branch Predictors,” West. Res. Lab., 1–29,
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-TN-
36.pdf. 1993.

[17] S.T. Pan, K. So and J.T. Rahmeh, “Improving the accuracy of dynamic
branch prediction using branch correlation,” in ACM Sigplan Notices,
Vol. 27, No. 9, pp. 76-84, 1992.

[18] M. Evers, S. J. Patel, R. S. Chappell, and Y. N. Patt, "An analysis of
correlation and predictability: What makes two-level branch predic-
tors work," in ACM SIGARCH Computer Architecture News, ACM, Vol.
26, No. 3, pp. 52-61, 1998.

[19] A. Pandey, " Simulating a pipelined RISC processor," Inventive Com-
putation Technologies (ICICT), International Conference on, IEEE, Vol. 2,
2016. doi: 10.1109/INVENTIVE.2016.7824854.

IJSER

http://www.ijser.org/

	1 Introduction
	2 understanding instruction level parallelism
	2.1 TYPE I: Branch after Load
	TYPE II: ALU instruction after Load
	TYPE III: Branch after ALU instruction
	TYPE IV: Store after Load
	TYPE V: ALU after ALU instruction
	TYPE VI: ALU as third instruction after another ALU Instruction
	TYPE VII: Branch as fourth instruction after ALU instruction
	TYPE VIII: Store after ALU instruction

	3 Results from Simulated Run
	Running the code with data hazards and control hazards
	Running the code after loop unrolling

	It can be observed that because of successful exploitation of ILP we are able to execute the code in Table II, with instructions running in parallel in five different stages of a pipelined RISC processor, only in 15 clock cycles. On the other hand, sa...
	4 Conclusion
	References

